
AO-AI06 802 MINNESOTA UNIV MINNEAPOLIS DEPT OF COMPUTER SCIENCE F/S 9/2
OPTIMAL SPC PERMUTATIONS ON A CURE CONNECTED SIMD COMPUTER. CU)
AUG 81 0 NASSIMI, S SAN NOOO14-0--0650

UNCLASSIFIED TR-81-28 NL11",I //I///////IIIEND





F1'

Computer Science Department

136 Lind Hall

Institute of Technology

University of Minnesota

Minneapolis, Minnesota 55455

Optimal BPC Permutations On A

Cube Connected SIMD Computer,...

David/Nassimi Sard-talSahni

TeiApO r " Lt, r-28

• | "l tnbcU,>. Unlinited

Cover design courtesy of Ruth and Jay Leavitt.

I.,..



Optimal BPC Permutations On A Cube Connected SIND Computer
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Abstract

In this paper, we develop an algorithm to perform BPC permutations on a

cube connected SIMD computer. The class of BPC permutations includes

many of the frequently occurring permutations such as matrix transpose,

vector reversal, bit shuffle, and perfect shuffle. Our algorithm is

shown to be optimal in the sense that it uses the fewest possible num-

ber of unit routes to accomplish any BPC permutation.
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1. Introduction

An SIMD (Single Instruction stream Single Data stream) computer is a

parallel computer consisting of a large number of identical processing

elements. A block diagram of such a computer is given in Figure 1. SIMD

computers have the following characteristics:

(1) They consist of N processing elements (PEs). The PEs are

indexed 0, 1,..., N-1 and an individual PE may be referenced

as in PE(i). Each PE is capable of performing the standard

arithmetic and logical operations. In addition, each PE knows

its index.

(2) Each PE has some local memory.

(3) The PEs are synchronized and operate under the control of a

single instruction stream. This instruction stream is generated

by the control unit which has access to the program that is to be

run.

(4) An enable/disable mask can be used to select a subset of the PEs

that are to perform an instruction. Only the enabled PEs will

perform the instruction. The remaining PEs will be idle. All

enabledPEs execute the same instruction. The set of enabled PEs

can change from instruction to instruction.

The essential feature that distinguishes one SIMD computer family from

another is the interconnection network. In this paper, we are concerned

only with two types of interconnection networks: the mesh and the cube.

(i) Mesh Connected Computer (MCC)

In this model, the PEs may be thought of as being logically

arranged as in a two dimensional array A(nl,n2) where N - n1 x n2.

The PE at location A(i,j) is directly connected to the PEa at

locations A(i t l,J) and A(i,j ± 1) (provided these PEs exist).

Figure 2(a) shows the interconnections in a 4 x 4 MCC.

(ii) Cube Connected Computer (CCC)

Assume that the number of PEs, N, is a power of 2. So, N 2

Let iq i be the binary representation of i, i e [O,N -1]

and let i(b) denote the number whose binary representation is
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Figure 1 Block diagram of an SIMD computer

iq1...i, . ib ,...l**io where is the complement of ib and 0 _ b < q.

Hence, if i has the binary representation 10110, then 1(2 ) has the repre-

sentation 10010 and i(0) has the representation 10111. In a cube connected

computer, PE(i) is connected to PE(i (b )), 0 < b < q. Figure 2(b) shows the

PE interconnections in an 8 PE CCC.

It is important to note that PEa can communicate only via the inter-

connection network. Besides the mesh and cube connections, several other

connections schemes are possible. The reader is referred to Siegel

((SIEG79aJ and [SIEG79b]) for a survey of interconnections networks for

SIMD computers. The largest SIND computer currently under construction

is the massively parallel processor (MPP) being build by Goodyear Aerospace

Research [BATCgO]. This machine uses the mesh interconnection scheme

--A_ _ _ _ _ _ _ _ _ _ . _,j.._: .- i. ''
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(together with some variations) and will have 16,384 PEs.

An important problem that arises in SIMD computers is that of data

routing; moving data from one PE to another. While there are several forms

of the data routing problem [NASS81b], we shall deal only with the permu-

tation form. In a permutation problem, PE(i) wishes to send data to PE(A(i)),

0 s i < N where [A(O),...,A(N-l)] is a permutation of [0,1...,N-l].

Arbitrary data permutations are generally accomplished by sorting. For

certain classes of permutations, however, their exist algorithms that are

more efficient than sorting [NASS81a]. One such class is the BPC (bit

permute complement) class of permutations introduced in [NASS80]. A per-

mutation A is a BPC permutation iff it can be described by a vector

B - [Bq-IBq-2 ,...,B 0] (where N - 2q is the number of PEs), such that:

(a) Bi e f+0,+l,...,+(q-1)}. 0 s i < q, and

(b) [IBq- 1 I1Bq_2...,*'*B 0I] is a permutation of [0,1,...,q-1]

The destination d of the data in PE(i) can be computed from this vector

B as follows. Let iq_ 1 9.... i 0 be the binary representation of i and let

dq_1 ,.. . ,d o be the binary representation of d. For J - b, 1,...,q-l, we

have:

i if B k 0
d 1.DdIBjI" i j

IBi iifB < 0

Note that we distinguish between +0 and -0 and that -0 < +0 - 0. Also,

note that the total number of permutations that can be specified in this way
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is 2qq! - N(log N)!

Intuitively, for each BPC permutation A specified by B, the destination

PE for PE(i) is obtained by permuting the bits in the binary representation

of i and complementing certain bits. The vector B specifies how the bits are

to be permuted and also which bits are to be complemented. IBjI tells us

where bit j is to go, and the sign of B tells us if the Jth bit of i is to

get complemented.

As an example, consider the case N - 16, q - 4 and B - [-0,3,-l,-2].

The data from PE(i), i - i 3 i 2 i1 i 0 , is to be routed to PE(j) where j - j 3j 2jljo =

i 2i 0 13 0 < i < N. The BPC class of permutations includes most of the

permutations that commonly arise. Table 1 gives the B vectors corresponding

to several popular permutations.

Permutation Vector Representation

Matrix Transpose [q/2 - l,...,O,q - 1,...,q/2]

Bit Reversal [0,1,2,...,q - 1]

Vector Reversal [-(q - l),-(q - 2), ...,-0]

Perfect Shuffle [0,q - l,q - 2,...,l]

Unshuffle [q - 2,q - 3,...,O,q - 1]

Shuffled Row Major [q - l,q/2 - l,q - 2,q/2 - 2,...,q/2,0]

Bit Shuffle [q - lq - 3,...,lq - 2,q - 4,...,0]

Table I Some common permutations

Nassimi and Sahni [NASS8O] present an optimal algorithm for routing

BPC permutations on mesh connected computers. In [NASS81a], they show how

BPC permutations may be performed efficiently on a CCC. There algorithm is,

however, suboptimal in the sense that for some BPC permutations more data

movement may take place than necessary. In this paper, we develop an optimal

algorithm for routing BPC permutations on a CCC.

2. Optimal BPC Algorithm

Let b e [O,q-l]. In a unit-route (on a CCC), data can be moved from

PE(i) to PE(i b)1 0 s i < N. Let B [ [Bq...,*qB O] be the vector repre-

sentation of the BPC permutation A - [A(O),...,A(N-l)]. We first obtain a

I
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lower bound, 8(B), on the number of unit-routes needed to perform A on an

N PE CCC.

Theorem 1: Let B - [Bq-1,...,B 0 ] define the BPC permutation A - [A(0),....

A(N-1)]. 8(B) as given below is a lower bound on the number of unit-routes

needed to perform A on a CCC.

8(B) - I{blBb 0 b1

Proof: For each b for which Bb b, there exists at least one A(i) with

the property that ib 0 (A(i))b ((A(i))b denotes bit b of A(i)). Thus, at

least one unit-route along bit b is needed. So, at least B(B) unit-routes

are needed to perform A. E0

By making minor modifications to the routing algorithm presented in

[NASS81a], we can arrive at an algorithm that performs each BPC permutation

B using 20(B) - 1 unit-routes. The algorithm we are about to present will

use exactly 8(B) unit-routes and is therefore optimal.

Our algorithm follows the cycles present in the bit permutation B.

If (klsk2,...,k ) are the bits in a cycle of A then our algorithm first

routes all data to PEs having the correct final value for bit k1 (i.e.

following this route the destination Di for the data in PE(i) is such that

(Di)kl - (i)kl). Next, we route along k2, then k3, etc. Having finished

with this cycle, the next permutation cycle is followed and so on.

Let us first consider an example. Consider performing a perfect shuffle

on a CCC with 8 PEs. B - [0,2,1] and the destination A(i) for the data in

PE() has the binary representation i1 i0i2  (note that the binary repre-

sentation of i is 12 1 11 0 ). The elements to be permuted are assumed to be in

register R of each PE. B has only one cycle (1,2,0) - (BoB 1,B2). The

first route is along bit 1, then along bit J, the route is done only for

those PEs containing data with destination A(i) such that i 1 (A(i)) In

our example, when routing along bit 1, we need to route only data from PE(i)

with i1  i0 . This is so because (A(i))1 - i0 and if iI M i0 then the data

in PE(i) is already in a PE with the right bit i . Data to be routed is

moved to a routing register S, and the route performed.

We shall use the following notation and assumptions in specifying our

permutation algorithm:
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Figure 3: Perfect Shuffle on a Cube

(1) Each PE has two registers R and S. Both these registers are large

enough to hold the data being routed. R(i) and S(i) refer to the

corresponding registers in PE(i).

(2) Three types of assignments will be used:

(a) :- will be used for assignments requiring no routing. For example,

R(i) :- S(i) (both R and S are in the same PE).

(b) :-: will be used for exchanges requiring no routing. R(i) :-: S(i)

results in the R and S registers of PE(i) interchanging data.

(c) - will denote an assignment requiring a route. We shall require

that the PEs denoted by the left and right hand sides be connected

by a direct link in the PE interconnection pattern. For example,

ELI
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(b)b
R(i (b ) S S(i) is valid for a CCC (recall that i(b) is obtained

from i by complementing bit b in the binary representation of i).

Each assignment of this type is a unit-route.

(3) ib will denote bit b in the binary representation of i.

(4) PE selectivity can be done using a mask. The mask is specified in

parenthesis following the statement. Some examples of masks are:

(i) (i - ): this enables all PEs for which the binary represen-

tation of the PE index has bit b equal to 1.

(ii) (i # i): this enables all PEs for which the jth bit in the

binary representation of the PE index is different from the

kth bit.

When no mask is specified, all PEs are enabled. Instructions are

executed only on enabled PEs.

Procedure BPC-CUBE (Figure 4) is a formal statement of our BPC permu-

tation algorithm for CCCs. The loop of lines 1-16 searches for the beginning
of a bit cycle. If IB = b,we have a cycle of length 1. When Bb = b, no

work needs to be done. When Bb = -b, it is necessary to complement along

bit b (line 4). If IBbI # b, then we are at the start of a cycle of length

more than 1. Lines 7 to 12 follow this cycle. j is used to move along b,

IBbl, IBIB b 1I, etc. Line 9 puts into S(i) the data to be routed out of PE(i).

Line 10 carries out the route along bit k and then, in line 11, B is set

to j to signify that the cycle containing j will have been taken care of by

the time we exit from the case statement. j is moved to the next point on

the cycle. Line 14 moves all valid data to the R registers.

We need to elaborate upon two of the statements just made concerning

the algorithm. First, we need to show that line 9 moves into the S regis-

ters all records that are in a PE whose kth bit does not agree with the kth

bit of its destination PE. Secondly, we need to show that line 14 correctly

leaves all records in the R registers.

Let TR(i) and TS(i), respectively, denote the source or originating PE

for the records currently in R(i) and S(i). Let AR(i) and AS(i) denote the

destination PEs for the records in R(i) and S(i), respectively. At the

start of each bit cycle (line 6) all records are in R(i). Let TS(i) - * and
AS(i) - *. So, initially at line 8 we have (for any cycle): (TR(i)) -

and (TS(i))j 1 j, 0 i < N. (We shall assume that all relations involving

e - - - .
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are true. So, (0) i is true and j # i is also always true.) The

relation holds since no routing on bit j could have been performed on any

previous iteration of the S loop of lines 1 to 16. If B 1 0 then for

each PE(i) with i # ikV we have:

(AR(i)) k  (TR(i)) = j ik and (AS(i))k - (TS(i)) j = k

Hence, R(i) needs to be routed along bit k and S(i) doesn't. If ij = ik

then we have:

(AR(i))k = (TR(i)). = ij = ik and (AS(i))k = (TS(i))j = Ij - fk

Hence, S(i) needs to be routed along bit k and R(i) does not. So, line 9

correctly places into the S registers the records that need to be routed

along bit k when B > 0. Using a similar argument one can show the correct-

ness of line 9 when B < 0. So, following line 11, we have:

(AR(i))k = (AS(i))k = ik9 0 < i < N.

procedure BPC CUBE (A,n)

//Permute R (0 :2ql) according to the BPC permutation B(O:q-l)//

1 for b: - 0 5o q-1 !o

2 case

3 :Bb = b: do nothing

4 :Bb = -b: R(i ) -R(i)

5 :jIbj 0 b:

6 j:=b; s:=Bb

7 repeat

8 k :- IBjI //Next route is along dimension k//

//Put outgoing elements in S//

9if B a 0 th 5(i) :=: R(i), (ij # ik)

else S(i) :-: R(i), (ij ff ik)
(k)10 s(ik)  s(1

11 Bj:-J; j :-k

12 until j b

13 k :- Isl I/s is the initial B b//

14 if s z 0 then R(i) :- S(i), (i # i k )

else R(i):-S(i), (i.,ik)

15 end

16

end BPC CUBE

Figure 4
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Also, note that preceding the execution of line 10,

(TR(i))k (TS(i))k k

as no routes along bit k have yet been performed. Line 10 routes only S.

values, so after line 10 we shall have:

(TR(i)) k - ik and (TS(i))k 0 ik, 0 . i < N.

As a result, on all subsequent iterations of the loop of lines 7-12, we

shall have ETR(i))j = i and (TS(i)) # ij1, 0 e i < N, at line 8. So,shl ae[T~)j = j
line 9 will correctly set S(i) and line 10 will route correctly.

The preceding argument shows that when the loop of lines 7-12 is

completed for any b then:

(AR(i))q- (AS(i))q = iq

for all q e {IBbIBIBb . b).

It remains to move all records back into the R registers (line 14).

When a cycle is finished, half the records will be in the R registers and

half in the S registers. The records in the S registers need to be moved

to the R registers. The first time line 9 is executed for any cycle,

j = b and k = Is[. When line 10 is executed, records leave half the PEs

and the remaining half contain two records each. The empty PEs are those

with i b 0 i k if Bb > 0 and i b 
= ik if Bb < 0. Since bits b and Bb do not

get used in line 10 again until the last iteration of the repeat-until loop,

these PEs remain empty. They get a record only after the last execution of

line 10 for this cycle. At this time k = b. Thus, the PEs containing

records in their S registers are those with index i such that ib # i Is if

s 2 0 and b = s if s < 0 (note that s = Bb). Hence, lines 6 to 14

correctly handle cycles of length more than 1 and leave all records in the

R registers. From this and lines 3 and 4, it follows that all cy-les are

handled correctly and BPCCUBE performs every BPC permutation. The time

complexity of BPC CUBE is O(log N) and the number of unit-routes (lines

4 and 10) is 8(A). Hence, BPCCUBE is optimal.
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3. Conclusions

We have presented an optimal BPC routing algorithm for cube connected

computers. Several open problems remain. Is their a similarly optimal

algorithm to perform BPC permutations on perfect shuffle computers (see

[NASS81] for a description of the interconnection network used here)? Can

we develop optimal algorithms for other classes of permutations such as

omega and inverse omega permutations ([LAWR75]) etc.?

A

.i7-- .-..
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